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Abstract

We present a novel framework for neural network
compression through distributed consensus, building
upon our prior work in cognitive signature systems
(UK Patents GB2513351.3 and GB2513428.9 filed
August 15, 2025; Swiss Patent Applications filed Au-
gust 17-18, 2025), the Autonomous Agent Machine
Learning (AAML) framework, Reputation Circula-
tion Standard (RCS), and Federated Machine Learn-
ing (FML) architectures.

We establish three fundamental results:

Theorem 1 (Compression-Consensus Bound):
For any neural network with parameters 6 € R", there
exists a compressed representation 6 € R¥ where
k < n/log(n) such that Byzantine consensus among
m nodes with up to f < m/3 faulty nodes achieves
|0 — Decompress(6)|| < e with probability 1 — 4.

Theorem 2 (Verification Complexity): Consen-
sus verification on compressed representations re-
quires O(k log m) operations versus O(n logm) for
uncompressed models, where & /n represents the com-
pression ratio.

Theorem 3 (Information-Theoretic Optimality):
Our protocol achieves the theoretical minimum com-
munication complexity of Q(k - m - log(1/¢)) bits
for e-approximate consensus on k-dimensional com-
pressed spaces.

Key technical contributions include:

* A gradient sketching protocol resilient to adver-
sarial perturbations

* Homomorphic compression operators enabling
verification without decompression

* Proof that consensus on sufficient statistics pre-
serves model convergence guarantees

This work extends distributed systems principles
to model compression, establishing that consensus
and compression are dual problems under appropri-
ate information-theoretic frameworks. Full technical
details and proofs are forthcoming.
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1 Introduction

The exponential growth of neural network parame-
ters poses significant challenges for deployment, par-
ticularly in resource-constrained environments and
decentralized systems.

* Magnitude-based pruning (Han et al., 2015;
Frankle and Carbin, 2019): Removing weights
below threshold

* Quantization (Jacob et al., 2018; Nagel et al.,
2019): Reducing numerical precision

* Knowledge distillation (Hinton et al., 2015;
Romero et al., 2015): Training smaller models

¢ Low-rank factorization (Denton et al., 2014,
Jaderberg et al., 2014): Decomposing weight
matrices

While existing compression techniques such as
pruning (Han et al., 2015), quantization (Jacob et
al., 2018), and knowledge distillation (Hinton et al.,



2015) have shown promise, they typically treat com-
pression as a centralized optimization problem.

We propose a fundamentally different perspective:
compression as distributed consensus. This view-
point is motivated by several key observations:

1. Neural networks naturally exhibit hierarchical
information processing, with each layer trans-
forming representations

2. Adjacent layers often encode redundant informa-
tion that could be eliminated through coordina-
tion

3. The success of a compressed network depends
on maintaining agreement between layers on
critical features

4. Distributed systems theory provides robust
frameworks for achieving agreement under vari-
ous failure modes

Our contributions are:

* A formal framework treating neural network lay-
ers as distributed agents reaching consensus on
compressed representations

* Theoretical analysis proving convergence
bounds and compression guarantees

» Connection to rate-distortion theory showing op-
timality under consensus constraints

* Preliminary empirical validation demonstrating
practical viability

2 Core Insight and Motivation

Our approach emerged from empirical observations
during extensive experiments with multi-model con-
sensus systems. In analyzing 360+ elaborate prompt-
response sessions across 200+ models, we discovered
that consensus mechanisms naturally led to informa-
tion compression. Using outlier detection algorithms
to arrive at truthful outputs, we observed that:

1. Consensus outputs were consistently 10-15x
more compact than individual model outputs

2. Quality often improved through consensus, sug-
gesting noise elimination

3. The process resembled distributed agreement
protocols from classical computer science

This led to our key insight: if multiple models can
reach consensus with compression, perhaps layers
within a single model could achieve similar benefits
through internal coordination.
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